Site Loader

Appendix 1 Table 1: Effect of High-fat diet immediatelybefore exercise protocols in well-trained individuals.

  Subject Characteristics Fat Adaptation Protocol Performance Protocol Performance Outcome Okano et al., (1996)   Endurance trained males (n=10) Single meal given 4h pre-exercise   High-CHO meal: 4669kj; 79% CHO, 10%Fat and 11% Protein   Vs   High fat meal: 4711 kj; 30% CHO, 61% Fat and 9% Protein Cycling   65% of VO2max for first 120 min of exercise, followed by an increase of 80% No significant difference in heart rate, O2 consumption and perceived exertion.   Significantly higher respiratory exchange ratio in High-CHO group and significantly higher serum insulin at start of exercise.

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team

  Whitley et al., (1998)   Well trained cyclists (n=8)   4 hours pre-meal   High-CHO meal: 215g CHO, 26g Protein, 3g Fat   Vs   High-fat meal: 50g CHO, 14g Protein, 80g Fat Cycling   90 min at 70% of VO2max, followed by a 10-km time trial.   Significant decreases in high-CHO diet group for blood glucose, plasma nonesterified fatty acids, plasma glycerol, plasma chylomicron-triacylglycerol, and plasma 3-hydroxybutyrate concentrations during exercise.   Increases in plasma insulin, plasma epinephrine, and plasma growth hormone concentrations during exercise.   No differences in substrate oxidation during the exercise   No improvements in performance on the time trial.

Appendix 2 Table 2: Effectsof a High-fat, Low-CHO diet for up to 3 days  Subject Characteristics Fat Adaptation Protocol Performance Protocol Performance Outcome Lima-Silva et al., (2013)   Healthy physically active male volunteers   (n=6) 48hours   High-CHO diet: 70% CHO Vs Low-CHO diet: 25% CHO Cycling   115% VO2max to exhaustion Reduced time to exhaustion and a lower total aerobic energy contribution in low-CHO diet.     Starling et al., (1985)   Endurance trained men   (n=7) 1 day – Overnight fast and no ingestion of CHO during exercise   High-CHO: 83% of energy Vs High-fat: 68% of energy Cycling   TT of 1600kj 120-min cycling at 65% of VO2max.          TT performance impaired by 16% in high-fat group.

Pitsiladis and Maughan (1999)   Well-trained cyclists   (n=6) 3 days   High-fat: Fat 65% of energy, CHO 9% of energy. Vs Control group: CHO 82%   Cycling   Four cycling protocols to exhaustion at 70% of VO2max in two different temperatures (10°C and 30°C)       Time to fatigue reduced by 44% for fat trial (10°C) Time to fatigue reduced by 17% on fat trial (30°C)    Appendix 3 Table 3:High-fat, low-CHO diet for >5days in well trained individuals Subject Characteristics Fat Adaptation Protocol Performance Protocol Performance Outcome Phinney et al., (1983)   Well-trained cyclists   (n=5)   High-fat, low-CHO: 70% Fat, CHO 20g per day. Cycling   Ride to exhaustion (~65% of VO2max)   No significant difference and impairment in exercise capacity post high-fat diet Lambert et al., (1994)   Trained cyclists   (n=5) 2 weeks   High-fat: 70% fat, 7% CHO Vs High CHO: 74% CHO, 12% fat   Cycling   Wingate test of muscle power Cycle to exhaustion – 85% of peak power output (90% VO2max) and 50% of peak power output (60% VO2max) No significant difference in time to exhaustion and muscle glycogen utilisation Starting muscle glycogen levels were lower during high-fat diet.   Goedecke et al., (1999)   Endurance trained cyclists   (n=16) 15 days   High-CHO: 30% +/- 8%mj fat   Vs   High-fat: 69% +/- 1% mJ fat   Cycling 2.5-hour constant-load ride at 70% VO2peak followed by a simulated 40-km cycling TT Increased rates of fat oxidation after 5 days of high fat diet.

  No significant difference in performance.       Burke et al., (2012)   World class-endurance athletes   (n= see fat adaptation protocol)     3 weeks 3 isoenergetic diets: 1)    High-CHO: (8.

6 CHO, 2.1 protein, 1.2 fat) consumed before, during and after training (n = 9)   2)    Periodise-CHO (PCHO): Alternating between low and high CHO   (n = 10)   3)    Low-CHO, High-Fat (LCHF): < 50 g day CHO; 78% energy as fat; 2.

1 g kg protein. (n = 10)       Race walking Resistance training Cross training.     Increased rate of whole-body fat oxidation seen in LCHF group.   Despite improvements in peak aerobic capacity, performance was impaired in LCHF group.     Paoli et al.

, (2012)   Athletes, Elite artistic gymnasts   (n=8) 30 days   Ketogenic diet (KD): 54.8% fat, 40.7%protein, 4.5% CHO.   Vs   Western Diet: 38.5% Lipids, 14.

7% Protein, 46.8% CHO     Multitude of strength exercises No significant differences in performance. Cochran et al., (2015)   Active but not highly trained   (n=18) 2 weeks   HI-LO: 1L artificially sweetened water.

Snack bar: 100kcal, 17g CHO, 1g Protein, 3g total fat.   HI-HI: 1L drink – 157g of CHO. Snack bar: 250kcal, 38g CHO, 15g Protein, 5g Fat.     6 days over 2 weeks x 2 training sessons 5 × 4-min cycling intervals – 60% of peak power. During the 3-hr period between, participants ingested either: HI-HI: 195 g of CHO HI-LO: 17 g of CHO Improved performance in HI-LO group.   Hulston et al., (2010)   Well-trained individuals   (n=14) 3 weeks   67.5% CHO, 13.

5% protein and 19% fat. 9 High-intensity training sessions consisting of 5-min efforts, 1-min recovery for 90 mins at  70% V ?O2max   Fat oxidation increased post training. No improvement in performance Rhyu and Cho., (2014)   Taekwondo athletes   (n=20) 3 weeks   Ketogenic diet: CHO 22g (40.7%), Lipids 55%, Protein 4.

3%   Non-Ketogenic diet: CHO 30%, Lipids 30%, Protein 40%     1 hour low intensity exercise during early hours 2-hour of morning of strength training 2-hours Taekwondo training in evening   No improvement in performance            Appendix 4 Table 4: Effectsof a High-fat, low-CHO diet incombined with CHO restoration  Subject Characteristics Fat Adaptation Protocol Performance Protocol Performance Outcome Havemann et al, (2006)   Well-trained cyclists   (n=8) 6 days High-Fat diet: 68% energy from fat followed by 1 day of CHO loading (90% energy from CHO) Vs CHO diet: 68% energy from CHO followed by 1 day of CHO loading (90% energy from CHO).   100-km TT with sprints:   4-km sprints (78–84 % peak power output) 1-km sprints (90 % peak power output) Performance 2.5% faster in high-CHO group Impaired performance evident in LCHF group during 1km sprint   Burke et al., (2000)   Well trained cyclists   (n=8) High-CHO diet: 9.6gkg CHO, 0.

7gkg fat. Vs An isoenergetic high-fat diet: 2.4gkg CHO, 4 gkg fat. Cycling   2 h cycling at 70% VO2max + 7 kJ/kg TT Muscle glycogen levels restored to above baseline after 1 day of rest and CHO loading Significant reduction in muscle glycogen utilisation (~100mmol/kg dry weight) when compared with a high-CHO diet. Carey et al. (2001)   Competitive athletes (n=7)   High-CHO: 11g.

kg CHO, 1g x kg Fat Vs An Isoenergetic high-fat diet: 2.6gxkg CHO, 4.6g xkg Fat Cycling 4-hour cycle at 65% peak O2 uptake, followed by a 1-h time trial (TT).   Increased fat oxidation post submaximal exercise.   No statistical significant improvement in performance     

Post Author: admin

x

Hi!
I'm Dora!

Would you like to get a custom essay? How about receiving a customized one?

Check it out