Site Loader

Abstract An increasein the anti-armor threats has put forward the need for an increase in thedevelopment of ballistic armor protection systems or mechanisms. The mostinnovative idea or creation is nano-ceramics. Nano-ceramics has shown promisein development of armors which has got significant ballistic properties.

Inorder to increase the effectiveness of the nano-ceramics in acting as an armor,significant research has taken place. After conducting DOP tests on varioustypes of ceramic material it was concluded that the ballistic properties of theceramic material has increased with an increase in the macro hardness and byusing nano-ceramics with grain size greater than 0.5µm. 1. Introduction  Modern compact scenarios present itself with alot of situations that could be fatal for a soldier.

It is necessary to equip asoldier with body armors. These body armors should be capable of protecting thesoldier from various lethal weapons like bullets, body armor piercing rounds,etc.Armoredvehicles were introduced to protect the soldiers from bullets and safely reachthe battleground. But along with it came new technologies that made armoredvehicles like plastic. Kinetic energy  (KE)-penetrators or  armor piercing (AP)-bullets, shaped  charges,  explosively formed  penetrators  (EFP) and  fragments  from mines and improvised explosive device(IED) in combination with blast waves are some of the threats faced by armoredvehicles nowadays 1.Armorused for resisting armor piercing rounds are made ceramic/composite “sandwich”and is called as hybrid armor. The idea that hardenamel coating on steel improved bullet resistance.

Lack of lightweight armor                  leads to loss of helicopters duringthe Vietnam War. This in turn leads to a more dedicated and well-fundedresearch and development. It was soon concluded that ceramics was the bestchoice for improved armor 2. Further research and development onceramics has shown that ceramics alone was not sufficient to withstand incomingprojectiles. To overcome this obstacle an energy absorbing layer wasintroduced.

It was also found out that a combination of ceramic and compositeis lighter than a steel armor of the same size. This understanding lead to thedevelopment of hybrid armor which is a layer formed by the bonding of a ceramicand composite 2.     Fig 1: Hybrid Armor modelThe effect ofadhesive was found to be negligible after conducting experiments on variouscomposites. One possible method to estimate the ballistic limited velocity ofthe composite is by using an analytical model given by Florence. The model isbased on energy balance equations of the projectile and target. Kaufman et al.conducted penetration depth tests on four different types of ceramics using a12.

7 mm projectile. The tests concluded that silicon carbide ceramics arestronger than alumina ceramics 2. Studiesconducted by various researchers reported that addition of nanoscale particlesin small percentage resulted in the improvement in the mechanical properties ofceramics. Niihara was able to increase the strength of alumina by uniformly distributingnano-particles inside the base structure of alumina. Sadough Vanini et al.

realized that addition of SiC (Silicon Carbide) particles changed the ceramicfracture mode from inter-granular to trans-granular which in turn increased thefracture toughness and strength of the ceramic. 2. Material Properties  Ceramics actsas an effective material armor because of two main reasons: it reduces theprojectile into fragments on impact and distributes the impact load over alarger area of the backing material. Tile thicknessShockeyet al.

found out that the initial resistance is due to the compressive strengthof the ceramic. The projectile will be fractured or deformed upon impact. Thishappens only when the strength of the ceramic exceeds the strength of the projectile 2.

This implies thatthe compressive strength of the ceramic plays a major role in fracturing theprojectile. Hardness From thework done by Rosenberg and Yesherun, it can be noted that the ability of aprojectile to penetrate the backing material can be severely decreased byblunting the projective. An observation by Den Reijer states that there is nobenefit in increasing the hardness of the projectile above the required value 2.

           Density Variousresearchers have stated that low density is beneficial for target material.Lower density contribute to lighter weight armor. At the same time it allows inusing a thicker ceramic without a substantial weight penalty 2. Young’s, Bulk, Shear moduli Young’s,Bulk, Shear moduli are the main factors that determines the ability of a armorto defeat a projectile. The values of these factors that result in an effectivearmor has to be determined by conducting experimental trials on different typesof ceramics having different values of these factors 2. Shear Strength Tensionand large stress gradients exist next to the contact area and area directlyunderneath the projectile core respectively.

This implies that higher yieldstrength helps in resisting the failure due to the shear stresses produced nearthe impact site 2. 3. Experimental Procedures Themethod used for evaluating the ballistic protection capability is done by usingDOP (Depth of Penetration) test. The target is a composite made of a ceramicunder study and a backing material. The result is then compared with theresidual penetration in a semi-infinite reference target. This method ofexperimentation helps in determining the maximal ballistic protection potentialand also to compare between different results used for experimentation.

Thebacking material used was an armor steel of medium tensile strength (1000 MPa)and also as a reference material for comparison. Because of higher stiffnesssteel was preferred over aluminum.  ErhardtLach et al. conducted ballistic tests using a tungsten heavy metal rod having ageometry of 4 mm in diameter and 60 mm in length.

The impact velocity added upto 1660 m/s. Al2O3 ceramic tiles of 10 mm in thickness             and Si3N4ceramic tiles of 20 mm in thickness were used for DOP tests 1. The parameters usedwhile performing DOP tests are schematically shown in the figure given below.The data measurement will be done at the target and the results procured willbe used to evaluate the results using the equations 1.   Fm =      Fs=         F =Fm * Fs   Ali Asadiet al.

has conducted experiments using alumina powder which has a purity of99.6% and has a grain size of 3 microns. SiC and MgO particles having a grainsize of 100 nanometers were added to improve the mechanical properties ofalumina. The process used to achieve this is explained using a flow chart 4.       Fig 2: Theprocess of preparing nano-composite tile ceramic     Sixdifferent combinations of alumina powders combined with silicon carbides havingvolume percentages of 0, 2.5, 5, 7.

5, 10, 15 and 500 ppm MgO powder solutewhere mixed in isopropyl alcohol in a planetary mill for a duration of 3 hoursinside a magnetic mixer at a temperature of 100°C and then kept for drying at atemperature of 130°C. Hydraulic press of 20 to 30 bars is used to produce nano-compositewith dimensions 120x120x12 mm 4. Variousfactors like relative density, hardness, strength, elasticity modulus and fracturewere measured during the tests. The ballistic energy distribution coefficientis calculated using D=0.36(HCE)/ Kw 2 Area-density of the panelsis evaluated using the given equation 4Areal-density (  =  Where n, di, tirepresents number of layers, density of separate layers and the number oflayers.

 Andreas Krellet al. tells about another important parameter that influence the transmissionmeasurements is specimen thickness. Due to the thickness effect only materialswith real-in-line transmission with a value close to the theoretical value canbe enlarged in thickness. Mustafa Beyila et al. performed several tests onalumina/aluminum composite targets 5. The heat treatmentconditions that they investigated along with the thickness of aluminum andalumina layers have shown that they have a major influence on the ballisticbehavior of the composite target.

 M Bolduc et al.have done DOP tests on Al2O3 ceramic composites. Thesintering of SiC + CNT was found out to be unsuccessful and also no sampleswere available for the tests 3. The measured valuescorresponds to straight lines from the point of penetration to the deepestdistance in the backing material as shown in the figure below:    Fig 3: DOP measurement      Fig 4: DOP measurement  4.

Results Erhardt Lach et al. after conducting DOP tests on Al2O3 andconcluded that the results obtained after the performing evaluation of theequations with the values measured has shown that Fa valuesincreased with increase in hardness or with decrease in grain size 1. The best outcomewas obtained or seen for a grain size of 0.

6 µm. It was also concluded that themacro hardness decreased with decrease in grain size. This lead to a slightincrease in ballistic result. It was also observed that maximum in ballisticprotection was seen at the smallest grain size without massive amorphousinter-grain phases. The grain size of Al2O3 with grain size of 0.6µm and 9.82µmis shown below.

    Fig 5: SEM micrographs of fractured Al2O3 withgrain size 0.6µm         Fig 6: SEM micrographs of fractured Al2O3 withgrain size 9.82µm  5. Conclusion From the DOP tests conducted the authors mentioned inthe paper, it can be understood that the ballistic performance of a nano-ceramicdepends on the macro hardness and the type of the nano-ceramic used. Sinceliquid phase sintering increases the amorphous phases between the crystallinegrains and thus leads to the prevention in the increase of the macro hardness,it is always preferable to use ceramic material which could be sintered insolid phase.

It is always preferable to use nano-ceramic with a grain size morethan 0.5µm. Use of nano-ceramic with a grain size less than 0.5µm leads to thedecrease in the hardness of the nano-ceramic material which in turn decreasesthe ballistic properties of the material. Also substituting the conventional nano-ceramicwith Al2O3 – SiC – MgO nano-ceramic leads to the reduction ofthe areal-density of the samples by at least 30% 4.

Post Author: admin

x

Hi!
I'm Dora!

Would you like to get a custom essay? How about receiving a customized one?

Check it out